Fässer mit schwach radioaktivem Müll in UTD Heilbronn

Masse und Gesamt-Aktivität Nach Angaben der Bezirksregierung Düsseldorf

Fass-Nr.	Produkt	Masse brutto [kg]		Masse netto [kg]	Gesamt-Aktivität [Bq]
6538	Ausbruch	191	211	196	351000
	Ausbruch		245		277000
	Ausbruch		235		101000
	Ausbruch		246		309000
	Ausbruch		259	244	1550000
	Ausbruch		229	214	920000
	Ausbruch		253		380000
	Ausbruch		223		561000
	Ausbruch		235		636000
6553	Ausbruch		207		573000
	Ausbruch		254		474000
	Ausbruch		259		159000
6582	Ausbruch		196	181	627000
6583	Ausbruch		263		362000
6585	Ausbruch		220	205	409000
6587	Ausbruch		186	171	240000
6592	Ausbruch		244	229	115000
6593	Ausbruch		229	214	1350000
6594	Ausbruch		243	228	425000
6595	Ausbruch		152	137	372000
6597	Ausbruch		227	212	336000
6598	Ausbruch		267	252	1610000
6599	Ausbruch		206	191	323000
6600	Ausbruch		225	210	1340000
6602	Ausbruch		181	158	163000
6605	Ausbruch		224	209	225000
6608	Ausbruch		226	211	370000
6607	Ausbruch		225	210	836000
6610	Ausbruch		233	218	666000
6611	Ausbruch		272	257	1120000
6613	Ausbruch		224	209	97500
6615	Ausbruch		223	208	257000
	Ausbruch		214	199	701000
6617	Ausbruch		223	208	618000
6619	Ausbruch		253	238	840000
	Ausbruch		234	219	492000
	Ausbruch		221	206	247000
	Ausbruch		217		487000
6623	Ausbruch		228		115000
	Ausbruch		214		722000
	Ausbruch		260		494000
	Ausbruch		215		1190000
6647	Ausbruch		237	222	1470000

6651 Ausbruch	222	207	1250000
6652 Ausbruch	222	207	644000
6653 Ausbruch	209	194	398000
6655 Ausbruch	218	201	835000
6656 Ausbruch	255	240	1270000
6657 Ausbruch	238	223	325000
6662 Ausbruch	225	211	192000
6663 Ausbruch	194	179	1330000
6664 Ausbruch	225	210	1160000
6665 Ausbruch	229	214	298000
6667 Ausbruch	271	256	302000
6669 Ausbruch	285	270	1120000
6676 Ausbruch	223	206	382000
6677 Ausbruch	234	219	1230000
6683 Ausbruch	216	201	112000
6684 Ausbruch	266	251	1230000
6690 Ausbruch	302	287	1230000
6691 Ausbruch	244	229	1310000
6692 Ausbruch	246	231	1580000
6695 Ausbruch	238	223	884000
6696 Ausbruch	335	320	1840000
6699 Schlacke	121	106	668000
6707 Ausbruch	191	176	172000
6709 Ausbruch	320	305	2130000
6711 Ausbruch	266	251	342000
6712 Ausbruch	219	204	595000
6714 Ausbruch	247	232	550000
6715 Ausbruch	177	162	95100
6721 Ausbruch	210	195	1190000
6744 Ausbruch	138	123	82700
6745 Ausbruch	211	196	282000
6746 Ausbruch	219	204	155000
6758 Schlacke	192	177	169000
6784 Ausbruch	217	202	1370000
6793 Schlacke	187	172	820000
6802 Ausbruch	241	226	779000
6837 Ausbruch	211	196	96400
6843 Ausbruch	217	202	186000
6873 Ausbruch	245	231	773000
Anzahl/Summe			

Erfasste Isotope, Freigabe-Grenzwerte und Halbwertszeiten:

Isotop	Grenzwert 89	Halbwertszeit		
	[Bq/g]	[Bq/g]	[a]	
U-234	0,5	9	250000	
U-235+	500	3	700000000	
U-238+	500	100	4400000000	
U-238sec	500	0,1	4400000000	
Cs-137	50	10	30,2	
Co-60	5	4	5,3	

Erläuterung: +, ++ oder sec sind Mutternuklide im Gleichgewicht mit den in Tabelle 2 angegebenenTochternukliden, deren Strahlenexpositionen sind bereits berücksichtigt

Tochternuklide laut Tab.2:

U-235+: Th 231

U-238+: Th-234, Pa-234m, Pa-234

U-238sec: Th-234, Pa-234m,

U-234, Th-230, Ra-226, Rn-222,

Po-218, Pb-214, Bi-214, Pb-210, Bi-210,

Po-210, Po-214

Vergleich Maximal-/Minimalwerte mit Freigabe-Grenzwerten nach Anlage III StrahlenschutzVO

Isotop	<i>U-234</i> [Bq/g]	<i>U-235</i> + [Bq/g]	<i>U-238</i> + [Bq/g]	<i>U-238-sec</i> [Bq/g]		<i>Co-60</i> [Bq/g]
Maximalwert	2,92					0,0178
Minimalwert	0,206	0,00955	0,0878	0,00249	0,000118	0,0000587
Freigabe-Grenzwert	9	3	10	0,1	10	4
für Stoffe zur				13 Fässer mit		
Beseitigung				Überschreitungen		
Zum Vergleich: Freiga	be-Grenzwerte					
für Bauschutt und						
Bodenaushub	0,4	0,3	0,4		0,4	0,09
Gebäude zur						
Wiederverwendung	1	1	2		2	0,4
Metallschrott für						
Recycling	2	0,8	2	0,04	0,6	0,6

Anmerkung:

Nach Anhang III der StrahlenschutzVO können bei mehreren Isotopen Grenzwertüberschreitungen bei einzelnen Isotopen mit Unterschreitungen bei anderen Isotopen nach folgender Formel verrechnet werden:

$$\sum_{i} \frac{A_{i}}{FG_{i}} \le 1 \text{ oder } \sum_{i} \frac{C_{i}}{FG_{i}} \le 1.$$